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Abstract: The problem concerning the elimination of overflow oscillation in fixed-point state-space digital filter 

employing saturation arithmetic is considered by various researchers. In this paper a review is done to the finite 

procedure proposed by T. Oba [1] to test the stability of digital filters under saturation arithmetic.  
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I. INTRODUCTION 

 

When a digital filter is implemented on a digital computer or on special-purpose digital hardware, the filter coefficients 

are stored in binary registers. These registers can accommodate only a finite number of bits and hence the filter 

coefficients have to be truncated or rounded-off in order to fit into these register. The finite-word length in recursive 

digital filter produces non-linearities, namely quantization and overflow. The presence of such non-linearities may 

result in the instability of the designed system. When dealing with the design and implementation of fixed-point state-

space digital filters, it is, therefore, essential to know the conditions under which the filter will be globally 

asymptotically stable. 

 

II. SYSTEM DESCRIPTION 

 

The system under consideration is described by 
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Where )( rx  is an n-vector space, ][
ij

aA  is the n x n coefficient matrix , and T denotes transpose. The saturation 

nonlinearity is given by 
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i=1, 2,3,………….n are under consideration.  

 

Eq(1) is used to describe digital filters with symmetric saturation implemented with finite register length under zero 

external inputs. 

 

III. THEOREM 1 

 

The system described in (1) is asymptotically stable if there exists a positive definite matrix P satisfying 
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such that PAAP
T

   is positive definite. 

 

There are some prerequisite which are to be known before stating the algorithm to calculate 
|| A

w  for (2a), they are 

a) Stability test is to be done on matrix A, where 
nxn

RA  ,  

b) The order of the matrix A is n.  
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c) The matrix njiaB
ij

....2,1,,   

d) J0=ɸ   ; Jk contains coordinates indices 

e) n0 =0   ; nk contains the number of indices of Jk 

f) 
c

k
J  contains the complement indices of Jk 

g)  
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IV. ALGORITHM 1 

 

The following procedure is proposed by ref [1] with k=1, to obtain ,
B

J
B

n and
n

B
Rw   

i) Let k
J  denotes the list of coordinate indices i’s satisfying 1)(
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,and let k

n denotes the number of 

the indices in k
J  
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and then exit the loop. 

iii) Define 
n

k
Rw    such that 
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and return to step ( i ) with k=k+1. 

 

V. NUMERICAL EXAMPLE 1 
 

To illustrate the algorithm for the stability test of fixed-point state-space digital filter with saturation arithmetic, a 

specific example of a third-order digital filter is considered with 
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According to the prerequisite of the algorithm Order of the matrix A is 3 
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Iteration1 
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  1
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Bw , where ‘i’ is the indices values satisfying the given condition, in this step it is {3} Therefore J1= {3} and 

n1=1(number of indexes in J1) 

Step (ii) 
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Step(iii) 
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Now return to step (i) of the algorithm, with k=k+1 i.e. k=2 

Iteration 2 

Step (i) 
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Bw , where ‘i’ is the indices values satisfying the given condition, in this step it is {1,3} 

Therefore  3,1
2
J  and 2

2
n (the number of indices in 

2
J  ) 

Step (ii) 

21
JJ   and nn 

2
 

Step (iii) 
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Where 
c
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contains the complement indexes of 
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J  i.e.  2
2


c
J  

Now 

   

  

































 




































































0333.0

7037.0

2,1
3.0

5.0

9.00

4.09.0
)(

2,11
3

5

10

1

10

41

10

1

10

01

2

2

2

2

1,

1

2

,

1

1

1

2

J

a

J

ba
b

J

w

aw

aw

   1
2

2
c

J
w  

Return to step (i) of the algorithm with k=k+1, i. e k=3 

Iteration 3 
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Exit the loop. 

To calculate the value of P for the given A in Numerical Example 1, we will use MATLAB LMI tool box. The matrix P 

for given A in Numerical Example 1 comes out to be  
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Following the algorithm stated in IV, for the A given in numerical example 1 we have  3,1
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(0.5423)-(0.7037)*(|-0.0789|)-(0.3333)*(|-0.0186|) = 0.4806 

 
Thus the value of (3c) comes out to be greater than zero. Hence the system considered in the numerical example 1 is 

judged to be asymptotically stable according to Theorem 1.The same can also be verified by plotting the state 

trajectories of the numerical example 1. The figure1 shows that the system under consideration is stable, as the next 

state of the system reaches zero with increasing iterations i.e. the output reaches zero with zero input 

 

 
Figure1 Dynamical behavior of the system considered in numerical example 

 

VI. CONCLUSION 
 

The criteria for the global asymptotic stability of fixed-point state-space digital filters with saturation nonlinearity have 

been given by several researchers. A finite procedure proposed by Ooba.T [1] ascertains the global asymptotic stability 

of the system considered in the numerical example. Modification is done to the algorithm proposed by [1] ,which is 

reasonably required and it broaden the scope of stability test from those of earlier results. 
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